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Abstract 

An experiment that is sensitive to anomalous disper- 
sion effects will produce at one wavelength indepen- 
dent intensity information at a reciprocal-lattice point 
and its negative. These pairs of intensities are known 
as Bijvoet pairs. The usual analysis of the implications 
of Bijvoet pairs leads to the conclusion that they 
generate a twofold ambiguity in the evaluation of 
certain phase differences. In this paper, it is shown 
that additional information contained in the Bijvoet 
pairs, and not nohnally used in the analysis leading 
to the implication of twofold ambiguity, can be used 
to obtain unique or essentially unique values for the 
phase differences of interest with potentially useful 
accuracy. The accuracy, of course, depends upon the 
accuracy of the data, but a test example has shown 
considerable insensitivity to such errors. The analysis 
presented here is based on an exact algebraic analysis 
of the intensity equations associated with the 
anomalous dispersion technique. Although the theory 
is quite general, applying exactly to any number or 
type of anomalously scattering atoms at any number 
of wavelengths, the application here concerns the case 
of one type or one predominant type of anomalously 
scattering atoms in a one-wavelength experiment. It 
is noted that in the two equations associated with the 
Bijvoet pairs there are three unknown quantities. It 
is shown, however, that the two intensity data provide 
enough information to evaluate the three unknown 
quantities to good approximation in an essentially 
unique fashion, which, in addition, can be effected 
in a least-squares calculation. The phase information 
of interest that is obtained concerns the values of 
phase differences, ~0~',~-~P2".h, between phases associ- 
ated with the structure of nonanomalously scattering 
atoms and those associated with the structure of the 
anomalously scattering atoms, respectively, with all 
atoms scattering as if there were no anomalous dis- 
persion. 

Introduction 

An exact algebraic analysis of multiple-wavelength 
anomalous dispersion data resulted in an essentially 
linear system of simultaneous equations (Karle, 
1980). The unknown quantities are intensities and 
phase differences that would be obtained if there were 

no anomalous dispersion. The equations are exact 
for any number or types of anomalously scattering 
atoms. Variation of the values of the observed 
intensities is expressed in the simultaneous equations 
by means of factors that modify the unknown quan- 
tities and can be evaluated from known values for 
the real and imaginary corrections to the atomic scat- 
tering factors. Isomorphous replacement information 
is readily incorporated into the system of equations. 

An evident application of the simultaneous 
equations would be to measure intensity data at 
several wavelengths so that the number of indepen- 
dent data would at least equal the number of unknown 
quantities. Analyses should benefit in increased 
accuracy from an excess of independent data over 
unknown quantities. In this paper, a particularly 
simple but potentially useful case is considered, 
namely, a one-wavelength experiment applied to the 
case in which the substance of interest contains one 
type or one predominant type of anomalously scatter- 
ing atom. An algebraic analysis of the case of one 
type of anomalous scatterer has recently been presen- 
ted by Woolfson (1984) in terms of two sets of data, 
one with anomalous scattering and one without. The 
discussion here is restricted to only one set of data 
with anomalous effects. 

In a one-wavelength experiment involving anom- 
alous dispersion, values are obtained for indepen- 
dent intensities associated with a reciprocal vector and 
its negative, Bijvoet pairs. Each Bijvoet pair gives rise 
to two independent equations. Each of the equa- 
tions contains as unknown quantities two intensities 
concerned with the nonanomalous scattering, and 
a phase difference, i.e. three unknown quantities. 
It would appear that two independent equations 
containing three unknown quantities would be of 
little use. However, the two unknown intensities bear 
an approximate relationship to the two measured 
intensities, which can be made use of. As a con- 
sequence, it will be seen that a system of equations 
can be generated that can be solved by a least-squares 
technique to yield values for the unknown intensities 
and the unknown phase differences in a unique or 
essentially unique fashion. The term 'essentially 
unique' implies the existence of a procedure that 
distinguishes between two alternative values, even 
when they are fairly dose. In the latter case, a variety 
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of selections would approximate the correct answer 
well. Information concerning the structure of the 
anomalous scatterers is not required. The potential 
of the mathematical system to be described here may 
be compared to the usual analysis of a one-wavelength 
anomalous dispersion experiment in noncentric sys- 
tems, which would, in general, imply the existence 
of a twofold ambiguity, even when the structure of 
the anomalous scatterers is known. 

In the past, unique phase information has been 
extracted from one-wavelength anomalous dispersion 
experiments. A useful way for resolving the ambiguity 
that was normally obtained was suggested by Peerde- 
man & Bijvoet (1956) and by Ramachandran & 
Raman (1956). It was to choose, between the two 
alternatives found in their analyses, that phase that 
was closest to the phase that could be computed from 
known positions for the anomalously scattering 
atoms. This gave a correct choice in a majority of 
instances. This method was used by Dale, Hodgkin 
& Venkatesan (1963) in the study of the structure of 
an aquo cyanide of the natural vitamin B~2 nucleus 
containing cobalt. More recently, use was made in a 
probabilistic fashion by Hendrickson & Teeter (1981) 
of the known positions of anomalously scattering 
sulfur atoms in the investigation of the structure of 
the macromolecule, crambin, to facilitate the resol- 
ution of phase ambiguities. In all these applications, 
the known structure of the anomalously scattering 
atoms was used. The analysis presented here for one- 
wavelength anomalous dispersion data is distin- 
guished from the earlier ones in that it gives essentially 
unique phase information without the use of struc- 
tural information concerning the anomalously 
scattering atoms. In fact, only information 
concerning the chemical nature of these atoms is 
required. 

Although this paper doc~ not concern trxplct pha~c 
invariants it is noteworthy that triplet phase invari- 
ants can be evaluated unambiguously from one- 
wavelength anomalous dispersion data by prob- 
abilistic means (Hauptman,  1982; Giacovazzo, 
1983) and by the application of certain rules (Karle, 
1984b). 

Theory 

We consider the case of a structure composed of 
atoms that scatter nonanomalously and atoms, all of 
the same type, that scatter anomalously. The 
appropriate equations, which were obtained from the 
aforementioned analysis (Karle, 1980), may be 
written 

n 2 
IF~I ~ = IF,,~I + , ~  F;,,, = 

+ # .  F~'..I F~.,, cos (~o~'.- ~,~..) 

+ Yh FIb  IF~'h sin (~o~'.~,-- ~,h) (1) 

and 

Fx G 2 = IF~, h 2.1 - ~h F~,h 2 

+ IF;, I cos  

- y h  F i b  ]F~,h sin (~0[h-- ~0~,h), (2) 

where 

ah = 1 +( f~2 ,J f '~ ,h ) [ ( f f~2 ,h / f f 2 ,h )+2  COS 3a2,h] (3) 

fib = 211 + ( f~2,h / f~ ,h)  COS 3~2,h] (4) 

Yh = 2( f~2 ,h / f~ ,h )  sin 8,2,h. (5) 

]F~h] is a known structure-factor magnitude whose 
value is obtained from a measurement of the intensity 
at a particular wavelength, A, for a given reciprocal 
vector, h, IF]'hl is the magnitude of the corresponding 
structure factor for the nonanomalously scattering 
atoms, I F~,h] is the magnitude of the corresponding 
structure factor for the anomalously scattering atoms 
scattering as if there were no anomalous scattering 
and ~0]'h--~0~,h is the difference between the phases 
associated with F[hl and F~,h, respectively. 
Evidently, the subscript 1 refers to the non- 
anomalously scattering atoms and the subscript 2 
refers to the anomalously scattering ones. Further 
definitions of the quantities in (3)-(5) follow from 
the definition of the atomic scattering factor for an 
atom of type q, 

fm, h =f~,h +flq, h + if'~q,h, (6) 

where f~,h is the normal atomic scattering factors and 
f'~q,h and f~(q,h are the real and imaginary corrections. 
Equations (3)-(5) contain the following for q = 2: 

J~q,h= r ¢,,2 ~ 4.,,2 ,~1/2 (7) 
k J  Aq, h ~ d A q ,  h] 

8Aq,h = tan- '  (f~q,h/f'~q,h). (8) 

The quantities f '  and f"  are normally treated as 
independent of h and are tabulated so that appropri- 
ate values for t~h, flh and Yh may be readily computed. 

The two equations representing the Bijvoet pairs 
are (1) and (2). It is seen that these equations involve 
three unknown quantities, F•,h] , ]F~,hl and ~0~',h-- q)~,h" 
This apparent imbalance between the number of 
independent data and number of unknown quantities 
can be overcome to yield unique or essentially unique 
values for q~',h--q~,h without any knowledge of the 
heavy-atom structure. This is accomplished by recog- 

F n n nizing that ~,h and F2.hl are approximately defin- 
able in terms of the measured Bijvoet pairs and that 
the values obtained for ~0]'h--~0~.h from (1) and (2) 
are relatively insensitive to errors in the values for 
IFT,,,I and F~, h . 

In this section three systems of defining equations 
are presented that can be treated in a least-squares 
fashion. System I is a general system, but can be 
replaced for convenience with system II or III, if 
desired. In fact, system II has been used with the 
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test calculations that are presented. The defining 
equations are treated in the usual least-squares fash- 
ion, namely, the sum of the squares of the errors in 
the defining equations are minimized. 

Unlike most least-squares calculations, test calcula- 
tions have shown that it is possible to proceed with 
systems I - I I I  even though the number of independent 
equations does not exceed the number of unknown 
quantities. This is no doubt facilitated by the fact that 
in the systems all the defining equations are linear 
except for one that is quadratic, giving a broad range 
of convergence. Suitable starting values for the 
unknown quantities are thus fairly readily obtained. 

In the next part, approximate statistical formulas 
are given for the evaluation of IFT, h and F~,h. The 
philosophy of their use is to recognize their approxi- 
mate nature and consider a range of starting values 
for F]'h and IF~,~ based on the initial evaluations. 
The effect of the variation of starting values on the 
resulting values of the desired phase differences from 
the least-squares calculation is then observed for con- 
sistency. In some instances in the test calculations, it 
was found that no variation on the initial evaluation 
of F~,hl was required for the succeeding least-squares 
analysis. Each time new starting values are employed, 
a new least-squares calculation is performed. Results 
obtained in good agreement with each other, indepen- 
dently of the broad range of starting values, are a 
measure of the reliability of the calculation. The ulti- 
mate test is, of course, the agreement of the results 
with the correct values. 

A geometric analysis of the interrelationships 
among the mathematical quantities that arise is given 
in the Appendix. 

Estimates for IF~h and IF~,~ 
A statistical argument would suggest that IF~',hl 

could be estimated from 

lET,,, ~ 0 " 5 W l , h (  FAh + FAh[),  (9)  

where 

W l h ~  - j = l  (10) 
Nano ' Nn°n n 2 ~ n ! 2 

jEx fjh j=IE [(fjh +f j )  +fj,2 

and Nnon and Nano are the number ofnonanomalously 
and anomalously scattering atoms, respectively, in 
the unit cell. Equations (9) and (10) may be compared 
with similar ones (Karle, 1984a) whose purpose it is 
to calculate values for the ]F~,[, the structure-factor 
magnitudes for the total structure when all atoms 
scatter nonanomalously. 

For [F2n, h[, it can be shown that 

I F T f f =  S { I I F ~  - F~<r, lll[2(f'~l~,,,)]} ~, (11) 

where f~,2 is treated as independent of scattering angle 
and S is a scale factor that is equal to 1 when the 
angles ~oxb and -~0xa are equal. The latter circum- 

n 2 stance gives a minimum value for IF2,h • An 
estimate of values for S can be based on test examples 
having the same atomic composition as the substance 
of interest. 

There are two probability theories giving identical 
results, except for notation (Hauptman, 1982; 
Giacovazzo, 1983), which afford an alternative way 

n 2 to estimate IF=, l • A test calculation with exact data 
for cytochrome c550.PtC12- showed these theories to 
underestimate the values of I F ~  = by about 1-30% 
for the first 2000 differences, II F~h -- F~II, listed with 
the largest first. The underestimation increased 
roughly as the differences decreased. This may occur 
because heavy-atom structures in macromolecules are 
quite simple and therefore are not comprised of a 
sufficient number of atoms to have the statistical 
properties predicted by standard probabilistic analy- 
ses. Some special studies of this matter have appeared 
recently (Shmueli, Weiss, Kiefer & Wilson, 1984; 
Karle, 1984c). 

System I 

Equations (1) and (2) can be considered as linear 
in four variables defined as 

x ,  = IFT,,,I ~ (12) 

x~ = IF~f f  (13) 

x 3 =  FT,,,IIF~,,,I cos (~1~-~o~,~) (14) 

x4= IF,",dlF ,d sin (~o~",b- 4o~,h). (15) 

Rewriting (1) and (2) gives 

IE~hl2= x,  + o..x= + ,8,.x3 + 3,,,x4 (16) 

and 

IF~sl 2 = Xl + c~hx2 +/~hx3 - ~ x 4 .  (17)  

In addition, there exists a quadratic relationship 
among the variables 

2 2 
X l X  2 = X3"~- X 4. (18) 

If (11), which defines x2, is added to (16)-(18), there 
are four equations defining four unknown quantities. 
Three of the equations are linear in the variables and 
one is quadratic. This system is amenable to least- 
squares solution with one important caution. The 
predominance of (18) in the system must be tempered. 
This can be accomplished in many ways. Two ways 
that are used are to either divide (18) by x2 or take 
the square root of both sides of (18). In the case of 
the former, the possibility exists that in some inter- 
mediate step in the least-squares process x2 could 
become quite small and cause instability and, in the 
case of the latter, an intermediate excursion of xlx2 
into negative values would inhibit the taking of the 
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square root. Suitable computer programming can 
anticipate and overcome such eventualities. 

Initial values for the unknown quantities can be 
obtained for x~ from (9), for x~ from (11), for x3 from 

x3=(lF;,~12+lF~r,12-2o,~x2-2Xl)/213~ (19) 

once initial values are obtained for Xl and x 2 and for 
x4 from 

x4= (IF~l~-IF~sl~)/2"r~, (20) 
where (19) and (20) are obtained by adding and 
subtracting (16) and (17), respectively. 

In the case that the only information available is 
values for IF~l = and IF~l ~, a suitable system of 
equations for a least-squares procedure involves the 
use of (11) and (16)-(18). Equations (19) and (20) 
can replace (16) and (17) in the least-squares calcula- 
tion. In test examples, it has been found that conver- 
gence is enhanced by combining all the equations, 
giving for the defining equations (11) and (16)-(20). 
These six equations are called system I. In practice, 
it has been found useful to consider several initial 
values for x~ and carry through the least-squares 
calculation several times. In that case, it is possible 
to dispense with the calculation of W~,u in (9) and 
simply base the initial values on 

IF,",~-~0.5e( F~ + F~sl), (21) 
where e can assume, for example, the values 0.7, 1.0 
and 1.3. It is most likely, for the simple substitution 
of heavy atoms in a macromolecule, that the range 
of values for F~'~, made accessible in the least- 
squares calculation by the, latter initial values, would 
include the correct value for IFT,~. 

System II 

The least-squares procedure can be varied in 
several ways. For example, an alternative procedure 
could be based on the use of (11) to provide a value 
for I F2~h that is held constant throughout the calcula- 
tion. Treating F2~h as a known constant can give rise 
to a somewhat different set of equations that replace 
(16)-(20). We define new variables 

x5 = IF?,d cos (~,,~" - ~2,h)'~ (22) 

X6 = IFT,~I sin (~,~',,- ~,~,,,) (23) 

and have the following new set of defining equations 
for the least-squares system: 

n 2 f ~hl2-x~-~h F=,~ -~lF~,b xs-Y~lF~,dx6=O (24) 
n 2 IF~Kl2--x,-ah F2,h - f i b  F~,~lxs+yu F~,h X6 0 (25) 

x , - x ~ - x ~ = O  (26) 

IF;.. Z + lF ar, E -  2x~ - 2a~,lF'~ ,. 2 -  2flh F'~ h Xs = O (27) 

[(F~IZ-IF~r,I~)/(2y~IF'~,~I)]-x6=O, (28) 

where the value for IF~I is obtained from (11). Initial 

values for xl can be obtained from (21), x5 from (27) 
and x6 from (28). The five equations (24)-(28) are 
called least-squares system II. 

The case o f  isomorphous replacement (system III) 

In the case that isomorphous replacement data are 
also available, measured values of the intensities for 
the native macromolecule provide values for the F~',LI. 
It is then possible to solve for F~.k and ~',b-~o~.h. 
In this case, approximate information for F~'~ I from 
(11) could distort the results and this equation is 
therefore either omitted from the least-squares system 
I (11, 16-20) or included with low weight. Values 
obtained for the F~,d can be used to determine the 
heavy-atom structure and therefore, ultimately, 
values for the ~,b. Having values for the ~ ' , h - ~ , h  
and, separately, values for ¢~,~ leads to values for the 

rl desired ~1,~. 
An alternative set of equations to system I for the 

least-squares calculation when F~'~[ is known can be 
considered. We define new variables 

x7 = IF ,,,I cos  (29) 

X 8 = [F~, h sin (~p~'~,- ~o~,h) (30) 

and have the following new set of defining equations 
for the least-squares system: 

IFxh 2 -  FY,h2--ahX2--flhlfY.hlx7--yh FY, hlx8=0 (31) 

f ~G=--lFy, h2--abX=--#h FY, h X7"l- Y~lFY,h xs=0 (32) 

x : - x 2 - x 2 = O  (33) 

f = +lF  l=-21Fy, l=-2a x=-213  FY,  x 7 - 0  (34) 

[(lF~.l=-IF~l=)/(2~,dF'~,d)]-x,--O, (35) 
F" where the value of l ,,d is obtained from experiment. 

Initial values for x2 can be obtained from (11), x7 
from (34) and Xs from (35). The five equations (31)- 
(35) are called least-squares system III .  Equation (11) 
may be added to system I l l  with a low weight. The 
reason for including it with a low weight is that it is 
possible, because of experimental error, to have 
inconsistent values among the three quantities IF~d, 
I Fas and IF7,d. If these values are not greatly incon- 
sistent, the least squares may be brought to reasonable 
convergence by including (11) with a low weight. The 
weight should be a compromise between dominance 
of the result by (11), as obtained from too large a 
weight, and insufficient influence to affect the conver- 
gence, as obtained from too small a weight. In one 
application to a problem in macromolecular structure 
determination, a weight of 0.01 for (11) was found 
to be suitable. 

Test calculations 

Test calculations were performed on exact data and 
also on data into which errors were introduced. The 
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Table 1. Calculation of least-squares system II for 
samples of data from cytochrome c550.PtC12- in which 

only the Pt atoms scatter anomalously 

The samples are based on h associated with an ordered sequence 
of  II FAhl- I FAall in which the largest one is first. The effect of  errors 
in the data was tested by multiplying IIF~hl-IF~ll by the error 
factor listed in the second column and effecting the error, in this 
case, by readjusting the value of  Fxa .  The actual distribution of  
the errors between Fxh and Fx~ does not materially affect the 

F"  F"  results. The average magnitudes of  error for ] 1,hi, ] 2,h] and 
(tp~',h-- ~2~,h) are seen in columns 3, 4 and 5, respectively. The total 
number of  independent  data is 3250 at 2.5 tl, resolution and the 
radiation is Cu Ka. 

Average 
Average Average error 

Error % error % error (rad) 
I I " " Sample factor I F~',hl F~ ,h  ~ l ,h  --  CP2,h 

1-100 1-50 21 49 0"21 
901-1000 1.50 21 50 0"35 
1601-1700 1.50 27 51 0.48 
1-100 1.25 14 25 0.16 
901-1000 1.25 20 30 0.34 
1601-1700 1"25 26 37 0.47 
1-100 1.00 13 7 0.17 
901-1000 1"00 19 17 0-37 
1601-1700 1"00 27 28 0"49 
1-100 0.75 19 25 0.29 
901-1000 0.75 20 27 0.47 
1601-1700 0.75 30 30 0.56 

1-100 0-50 24 50 0.48 
901-1000 0.50 22 51 0.59 
1601-1700 0.50 33 53 0-65 

data were computed at 2.5 A resolution for Cu Ka 
radiation from the coordinates for cytochrome 
c550.PTC124 - from Paracoccus denitrificans (Timkovich 
& Dickerson, 1976). The structure factors were com- 
puted in two ways. One calculation introduced 
anomalous effects from the Pt atom alone and the 
second included anomalous effects from the Pt, Fe, 
S and CI atoms. The first calculation models the case 
when there would be only one type of anomalous 
scatterer. This calculation not only represents an 
important experimental case, but also provides a basis 
of comparison for determining the effect on the errors 
of including all four types of anomalous scatterers in 
the data while treating the data as if the Pt atoms 
were the one predominant type of anomalous scat- 
terer. 

Calculations based on system II are presented in 
Table 1. They concern only the data that contain 
anomalous effects from the Pt atoms alone. In system 
II, IF .d is estimated from a statistical analysis and 
the least-squares system is solved for the values of 
IFT.d and (q~,h--q~,h). The value of IF~.,I was deter- 
mined from (11) where the value of S was obtained 
from a statistical calculation based on an arbitrary 
structure with the same chemical composition as cyto- 
chrome c550.PtC12-. The factor S assumes that value 
for which the average value of IF .hl in some sample 
of reflections, as computed from (11), is equal to the 

average value o f  [F~.hl for the same type of sample, 
as obtained from the arbitrary structure. 

The samples of reflections for which the statistical 
estimates of S were made coincide with those listed 
in the first column of Table 1. The numerical sequence 
refers to the sets of reflections for which the calcula- 
tions of system II were made and are based on the 
sequence of values of IlF~, -IF~KII. with the largest 
first. If a value for IF hl is very small, it may be 
detrimental to the calculations. In this case, no lower 
limit was used, but it is worth considering in future 
calculations. The starting values for [F~',h were the 
three values described for (21). The three calculations 
converged either to the same three values for IFT.hl 

n 11 and (¢1,h-- ¢2,h) or to two the same and one different. 
The values accepted were either three the same or 
two the same. A rejection criterion could be based 
on the magnitude of the discrepancy when two results 
differ from the third. This was not done here. 

Errors were introduced by taking the correct values 
for IF~,l- IF~l,  multiplying them by the factors listed 
in column 2 of Table 1 and readjusting the values of 
the IF KI to be consistent with the resulting smaller 
or larger differences. An even distribution of the errors 
among both the IF d and ]FaK] did not alter the results 
significantly. The introduction of rather large errors 
into the differences, I F ~ d - I F ~ l ,  had a remarkably 
small effect on the average errors for FI~,h and (¢~,U-- 
~2,h). 
The other type of error that could be considered 

is an error in the scaling of IF~h[ and IF~r,I. Because 
of the nature of the defining equations, this type of 
error affects only the accuracy of values of IF~',hl and 
IF .,I but not those for the desired phase differences 
(~,h--  q~,h). Because scaling error does not affect the 
values of the phase differences, it was not investigated 
further. 

Test calculations based on data from cytochrome 
c550.PtC12- in which Pt, Fe, C1 and S atoms were the 
anomalous scatterers are shown in Table 2. In the 
analysis of the data by use of system II, the Pt atoms 
were treated as the sole predominant type of 
anomalous scatterer. The nature of the computations 
was the same as those that contributed to Table 1 
with the exception that it was often necessary to 
modify the value of IF~.d. as obtained from (11), in 
order to bring the system to convergence. This was 
done by modifying the starting value of F~.,I by 
multiplying by the factors, 1.9, 1.6, 1.3, 1.0, 0.7, in 
succession until convergence was obtained. The 
results shown in Table 2 are seen to be comparable 
to those in Table 1 with only a modest increase in 
the average errors. 

It is seen from Table 1 that only the largest differen- 
ces, I F x h - [ F x a  I, give reliable values for the IF .,I 
and then only if the errors in these differences are 
small. Table 2 shows that when the four types of 
anomalous scatterers are considered, none of the 
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Table 2. Calculation of least-squares system II for 
samples of data from cytochrome c550.PtC142- in which 

Pt, Fe, CI and S atoms scatter anomalously 

The samples  are based  on h assoc ia ted  with an o rde red  sequence  
o f  II F~l -IF~II in which the largest  one is first. The effect o f  errors  
in the da ta  was tested by  mul t ip ly ing  IIF~,l-IF~ll by the er ror  
fac tor  listed in the second co lumn  and  effecting the error ,  in this 
case, by readjus t ing  the value IF~sl. The actual  d is t r ibut ion of  
errors  be tween  IF~.l and  IF~l does not  mater ia l ly  affect the results. 
The  average  magn i tudes  o f  e r ror  for  IFT..I, IF~.d and  (~P~',h- ~0~',h) 
are seen in co lumns  3, 4 and  5, respectively.  The total  n u m b e r  o f  
i ndependen t  da ta  is 3250 at 2-5 A resolut ion and  the rad ia t ion  is 
Cu K~. 

Average 
Average Average error 

Error % error % error (rad) 
F" Sample factor IFT,,,I 12.hi 'P~'.h -- '~.h 

1-100 1"50 30 85 0"29, 
901-1000 1"50 31 79 0.40 
1601-1700 1"50 27 75 0-67 

1-100 1"25 24 56 0"25 
901-1000 1"25 30 56 0-38 
1601-1700 1"25 27 55 0"69 

1-100 1"00 22 31 0"28 
901-1000 1-00 30 38 0"41 
1601-1700 1"00 27 43 0"72 

1-100 0"75 27 23 0-41 
901-1000 0.75 33 30 0-47 
1601-1700 0-75 28 42 0"75 
1-100 0-50 31 39 0"67 
901-1000 0-50 35 45 0"59 
1601-1700 0"50 29 52 0"80 

estimates of ]F~,h is reliably obtained. A two- 
wavelength experiment, which would contribute 
additional defining equations, or accurate informa- 
tion concerning the values of F]'h, as may be 
obtained from an isomorphous replacement experi- 
ment, would afford an opportunity to obtain more 
accurate values for the I F~,d and the other unknown 
quantities as well. Reliable data for the F~,~l would 
be valuable for the determination of the heavy-atom 
structure. Knowledge of the latter gives values for the 
~0~,h. Once these are known, the desired values for 
the ~0~,h may be obtained from the known values of 

rl  /1 gi the differences, ~t)l,h--~2,h. The values for the q~l,h 
then permit the immediate calculation of a Fourier 
map of the electron distribution. 

Summary remarks 

Least-squares techniques for treating data obtained 
from one-wavelength anomalous dispersion experi- 
ments have been presented, which led, in test calcula- 
tions, to unique evaluations of the phase differences, 

n ri  ~01,h- ~2,h, within acceptable ranges of accuracy, even 
when the errors in the differences IIF .l-IF  ll were 
rather large. The uniqueness of the results derives 
from inherent information in the measured intensities 
concerning the normal structure factors for the non- 
anomalously and anomalously scattering atoms. The 
calculations involved are very simple and can be 
carried out at a relatively high rate. It has been pointed 

out elsewhere (Karle, 1984c) that the phase differen- 
ces (~,~--~,h) can be formed into triplet phase 
invariants for the nonanomalously scattering atoms 
for use in phase determination if difficulties should 
arise in the determination of the heavy-atom structure. 

In order to make the calculations described in this 
paper, the only information required concerning the 
anomalously scattering atoms is the chemical nature 
of the predominant type of scatterer. The calculations 
should have fairly broad application in practice. The 
presence of more than one predominant anomalous 
scatterer of widely differing atomic number may 
require the use of multiple-wavelength experiments 
and the associated theory (Karle, 1980). 

Use of multiple-wavelength data has the potential 
of enhancing the accuracy of the analyses in any case. 
The point of the presentation here, however, has been 
to show how much information is derivable from a 
one-wavelength experiment and the potential utility 
of such an experiment. 

I wish to thank Mr Stephen Brenner for writing 
the appropriate programs and making the computa- 
tions reported here. 

This work was supported in part by USPHS grant 
GM30902. 

APPENDIX 

Geometric analysis 

In this part a geometric construction is discussed that 
shows the relationships between the quantities that 
enter into the three systems of defining equations that 
are solved in a least-squares fashion to obtain values 
for the phase differences ~o~,h- ~,~,. The construction 
not only provides a graphical understanding of the 
quantities involved and how they are related, but it 
also affords a clear insight into the basis for obtaining 
unique or essentially unique values for the phase 
differences in a one-wavelength anomalous disper- 
sion experiment when there is one type or one pre- 
dominant type of anomalous scatterer present. 

The equations used in the construction are 

F~h = F~ .1. F~b (36) 

F*K = F~,* + F~* (37) 

F~, = F~,* (38) 

F*K = F~, + F~* (39) 

F~, = F~'.h + F~., (40) 

FAh = F~, h .1. F~, h -t- F~h ( 4 1  ) 

F*~= FT, h + F~,b + F~* (42) 

F~h = exp (iSx2)(f~2/f~2,h)F~,h (43) 

F~* = exp (--iSx2)(f~2/f~2,b)F~,h (44) 

Fah= F'r,+ 2i(f'~ff f~2.h)F'~.,. (45) 
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Equation (36) defines the structure factor for a struc- 
ture that scatters anomalously, Fxh, in terms of a 
structure factor appropriate to the same structure 
when all atoms scatter nonanomalously, F~, plus a 
structure factor that represents the total contribution 
from the anomalous scattering, both real and 
imaginary, F~h. Except for the quantity F~, all quan- 
tities appearing in (36)-(45) are defined in the body 
of the paper. Equation (36) is the source equation 
from which (1) and (2) were derived (Karle, 1980). 
Equation (37) follows from (36) and is written as the 
complex conjugate because it is convenient to use it 
in that form in the construction. Since (38) is valid 
when atoms do not scatter anomalously, (39) follows. 
Equation (40) is a statement that F~ is composed of 
the sum of the structure factors for the atoms that 
scatter nonanomalously, F~h, and the structure fac- 
tors for the atoms that scatter anomalously when the 
anomalous part of the scattering is omitted, F~,h. 
Equations (41) and (42) follow from (36)-(40). 
Equations (43) and (44) are valid when there is one 
type of anomalous scatterer. They follow from rela- 
tions that arise in the derivation of (1) and (2) (Karle, 
1980). Equation (45) is immediately derivable from 
(36), (39), (43) and (44). 

The construction shown in Fig. 1 is based on (36)- 
(45). Equations (1) and (2) were derived from these 
equations without approximation and their charac- 
teristics are properly represented by the characteris- 
tics of the diagram. We now proceed to construct the 
diagram in Fig. 1 in a stepwise fashion. We assume 

k.d- 
. . . . .  

Fig. 1. A construction showing the relationships among the quan- 
tities occurring in the equations that are used to evaluate the 
phase differences ~0t~,h - ~02~,h. Interpretation of the construction 
can be correlated with the experiences encountered in perform- 
ing the test calculations described in the text. a = IF2hl--IF2~l-- 

a r l  . _ t !  n . ~ n a . (f~2/f~2h)lr2h}, b--2(f~2/f~ah)lrEh[, c-IF2,h+F>,hl, d -  

r l  " a ~  ' " " Ir2.h+ fx~l. 

that the magnitudes Fah, IF~aI and ]F~ h] are known. 
In actual practice, values for IFahl and F x~ I are 
obtained from experiment and, as described in the 
paper, values for I F~hl may be obtained approxi- 
mately from values for IFxh[ and IFx~[ by use of (11). 
It is also assumed that the chemical identity of the 
anomalously scattering atoms is known. A value is 
selected for ~,h, the angle associated with [F2nh[, to 
facilitate the construction of the diagram. The value 
of ~0~,h is arbitrary and is not determined by the 
mathematics. This means that the resulting diagram 
is not determined in orientation. Rather, it can be 
arbitrarily rotated about an axis perpendicular to the 
plane of the diagram and placed at the origin. 

On the basis of the assumed information, the 
triangle having solid lines with sides [Fxh[, [F~K[ and 
b can be drawn, representing (45). A second triangle 
ambiguously placed can also be drawn, as shown by 
the triangle with dashed lines and the side labeled b. 
It can be obtained from the original triangle by rotat- 
ing about the vector of length b placed at the origin. 
We continue with consideration of the triangle with 
solid lines and proceed with the construction of (41). 
All information is available to compute F~,h+ F~h on 
the right side of (41). It is labeled with a e in Fig. 1. 
The head of this vector is attached to the head of the 
vector of magnitude ]Fxh[. Once this is done, it is 
possible to complete (41) by drawing the vector FI~,~ 
to close the triangle. Note that a value for [F]'h[ has 
been determined here and that a value for the associ- 
ated angle ~o]',h has also been determined relative to 
the assumed value for ~o~,b. The vector of magnitude 
d can now be drawn from the tip of Fl~h to the tip of 
F*~ to form a triangle that represents (42). The vector 
of magnitude d is entirely consistent with the con- 

n a ~  struction that could be made from F2,h+Fxr~, where 
the magnitude of F~* is labeled with a. 

The triangle with sides of magnitude b, e and d is 
also placed at the origin in order to help illustrate 
some angles involved in the construction and also to 
indicate that for a given ~0~,h there is no other place 
that the construction shown in solid lines can occur. 
The only other position in which the triangle with 
sides of length [Fln, hl, C and [Fxh[ c a n  occur is indicated 
by the triangle having dashed lines and a side of 
length e. It can be placed by rotating the triangle with 
solid lines about the vector of length e placed at the 
origin. A similar circumstance applies to the triangle 
with sides of length lET, hi, d and Ir d. Its ambiguous 
alternative is shown by the dashed triangle with a 
side of length d. It is evident that the elements of the 
main construction do not combine elsewhere on the 
circle of rotation for a fixed value of ~o2~,h. 

The question arises concerning the source of the 
alternative result often obtained in the calculations 
discussed in the paper, i.e. two different results were 
often obtained as the value of IfT,,,I was varied 
through its three assigned starting values. The expla- 
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nation follows. On the basis of the information avail- 
able, the triangle with sides b, c and d could just as 
well have been attached to the side b of the alternative 
dashed-line triangle. The magnitudes lEA, and 
IF~,h would still be preserved as well as the assumed 
value for ~0~.h. As seen in Fig. 1, such a triangle with 
sides of length b, c and d has been attached to the 
dashed triangle with the common base of vectors of 
length c and d extending far to the left. This deter- 
mines an alternative and quite different vector, F~"h. 
It is quite long, about 2.4 times longer than the 
initially determined [FT, d, extending as a dashed line 
from the origin to the base of the vectors of length c 
and d. The associated angle, q~',h, is also rotated 
somewhat more than 90 ° farther than the initially 
determined ~',h-The magnitude of the initial F~h is 
about 0.63 of the average value of lEA and F ~  and 
that of the alternative is about 1.5 times larger. 

It is evident now from Fig. 1 how two alternative 
sets of results arise and that the alternatives would 
be distinguishable by use of approximate knowledge 
of the value of  [F~,h[. It is of interest to review the 
assumptions inherent in the diagram as they relate to 
practical circumstances. There are experimental 
errors in [F~h[ and [F x~[ and [F~,h[ can be obtained 
only approximately from the latter two intensities. 
The arbitrariness of ¢~,h does not play a role in the 
calculations since the quantity evaluated is ~ nl,h - -  ~2,h,n 
which is invariant to rotation of the diagram in Fig. 
1 around the origin. The effects of the various uncer- 
tainties are illustrated in the test calculations. Because 
of the uncertainties, the variation of starting values 
for [F~'~[ and, on occasion, [F~,h[ was introduced into 
the calculations in order to explore the field of conver- 
gence. With the computer used for the test calcula- 

tions, 6000 distinct least-squares computations were 
performed in one minute. 

The diagram in Fig. 1 emphasizes the important 
practical significance of having additional informa- 
tion concerning F~.h] , ]F~hl and ~ h - A s  noted, infor- 
mation concerning If7.d is availabi'e from an isomor- 
phous replacement experiment since F~'h represents 
the magnitude of the structure factor for the native 
substance. If the structure of the anomalous scatterers 
is determined initially, values for the [F~,h are avail- 
able to enhance the accuracy of the calculations and 
values for the ~,h are available for the evaluation of 

" from values of the " " The immediate the ¢P~,h ~) 1,h -- ~2,h" 
calculation of the electron distribution of the structure 
of interest would follow. 
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Abstract 

Diffuse X-ray scattering from a disordered molecular 
crystal [ 1,4-dibromo-2,5-diethyl-3,6-dimethylben- 
zene (BEMB1)] has been measured by diffractometer 
and conventional Weissenberg-film techniques, and 

a detailed comparison of the two sets of data has 
been made. An interexperimental agreement factor 
between the the two sets of intensities was about 22%. 
Statistical tests on the data revealed that a substantial 
part of this discrepancy was mainly due to systematic 
differences attributable to alignment problems associ- 
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